Simulation-based parameterization of O⁺ outfluxes produced by wave-driven ion heating and soft electron precipitation

J. L. Horwitz and W. Zeng
Department of Physics
The University of Texas at Arlington
ISSS-8 Workshop
Kauai, Hawai
February 25-March 3, 2007

High-latitude Ionosphere

Dynamic Fluid-Kinetic (DyFK) Model

- Treats ion distribution functions with collisional and kinetic features, includes self-consistent coupling to ionosphere.
- Time-dependent, 1.5-dimensional highlatitude plasma transport model.
- Couples truncated version of the Field Line Interhemisphere Plasma (FLIP) model to Generalized SemiKinetic (GSK) for higher altitudes.

- Flux tube extends from 120 km to several R_E altitude.
- Fluid-region upper boundary conditions for successive steps from advancing GSK treatment.
- Cower boundary of GSK treatment set at 800 km altitude. Simulation H⁺ and O⁺ ions injected at lower boundary of GSK based on fluid-treatment results there.

The dynamic boundary coupling in an overlap region between the fluid and generalized semi-kinetic treatments in the DyFK model [after Estep et al., 1999]

Strangeway et al.[2005] analysis of FAST particle and field observations at 4000 km altitude:

Ion flux correlated with electron precipitation:

$$f_i = 1.022 \times 10^{9 \pm 0.341} n_{ep}^{2.200 \pm 0.489}$$

where f_i is the ion flux in $cm^{-2}s^{-1}$ and n_{ep} is precipitating electron density.

Correlation with Poynting flux:

$$f_i = 2.142 \times 10^{7\pm0.242} \, S^{1.265\pm0.445}$$

where S is the Poynting flux at 4000 km altitude in mW-m⁻².

Somewhat similar analysis by Zheng et al.[2005] with POLAR observations near 6000 km altitude.

Toward a Formula Representation of the Effects of Wave-Particle Interactions and Soft Electron Precipitation on Ionospheric Outflows: Strangeway et al.[2005] Flow Diagram

Winglee et al.[JGR, 2002]: Global impact of ionospheric outflows on the dynamics of the magnetosphere and cross-polar cap potential

To obtain a similar formula representation based on DyFK simulations, 140 DyFK runs were used to obtain the O $^+$ outflux at 3 R_E altitude in a flux tube (as then mapped to 1000 km altitude) subjected to the two indicated auroral processes for two hours. The evolution of the O $^+$ density for a typical run is displayed here.

Evolution of the O⁺ field-aligned velocity profile for the same DyFK simulation run.

Sigurður H. Stefnisson

Evolution of the O⁺ field-aligned flux profile for the same DyFK simulation run.

O⁺ Outflows versus Wave Spectral Level and Electron Precipitation for 140 DyFK Runs

Figure (a-top) is the spectrogram of the O+ outflows from the DyFK simulations, while (b-bottom) is the spectrogram representing the formula:

$$Flux_{O^{+}} = 8.8(3.0 \times 10^{5} + 0.02 f_{e}^{1.4} \times 10^{9})$$

$$(\tanh(8D_{wave}) + 0.2D_{wave}^{0.6})$$

where $Flux_{O+}$ is the O^+ number flux in cm⁻² s⁻¹ at 3 R_E mapped to 1000 km altitude; f_e is the electron precipitation energy flux in ergs cm⁻² s⁻¹, and D_{wave} is the wave spectral density at 6.5 Hz in (mV)² m⁻² Hz⁻¹.

Summary of Results for Formula Representation

Wave heating functions as "valve" for O⁺.

When wave spectral density exceeds threshold, causes energization of majority of the entering O⁺ ions to escape energies,

Further increases of wave spectral density cause no significant further increase in O⁺ (number) outflux.

Electron precipitation causes ~ monotonic increases of O⁺ outflux.

Observational evidence for wave-heating "valve" effect?

Knudsen et al[1998] examined Freja measurements, at ~1700 km altitude, for correlations between ion energization and electron bursts and BBELF waves. The plot at the right displays integrated 0-20 eV ion counts versus wave spectral density which suggest that significant local heating occurs only above a critical wave spectral density level. This is, however, somewhat different than the "valve" question of attainment of significant escape fluxes of O⁺ requiring such a threshold in wave power.

Future Directions for the Modeling of Ionospheric Outflows

- For this presentation on representing the O⁺ outflows, the characteristic energy of the electron precipitation was fixed while the outfluxes were characterized vs. precipitation energy flux and the benchmark electric field wave spectral density value.
- We will also be investigating the additional dependences on such factors as the characteristic energy of the electron precipitation and the solar zenith angle in the F-region of the flux tubes.

Preliminary Results on O⁺ Outflux vs. Characteristic Precipitation Electron Energy

For the plot displayed, the precipitation electron energy flux was fixed at 1.0 ergs cm⁻² s⁻¹, and wave spectral density at 0.3 mV² m⁻² Hz⁻¹, as the characteristic energy of the electron precipitation was varied. The associated curve is:

$$Flux_{O^{+}} = 1.07 \times 10^{8} \, \mathcal{C}^{\left(\frac{500 - E_{n}}{390}\right)^{2.6}}$$

where E_n is the characteristic electron precipitation energy in eV.

